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Our flow-visualization and spectral studies of flow between concentric independently 
rotating cylinders have revealed a surprisingly large variety of different flow states. 
(The system studied has radius ratio 0.883, aspect ratios ranging from 20 to 48, and 
the end boundaries were attached to the outer cylinder.) Different states were 
distinguished by their symmetry under rotation and reflection, by their azimuthal 
and axial wavenumbers, and by the rotation frequencies of the azimuthal travelling 
waves. Transitions between states were determined as functions of the inner- and 
outer-cylinder Reynolds numbers, Ri and R,, respectively. The transitions were 
located by fixing R, and slowly increasing R,. Observed states include Taylor vortices, 
wavy vortices, modulated wavy vortices, vortices with wavy outflow boundaries, 
vortices with wavy inflow boundaries, vortices with flat boundaries and internal 
waves (twists), laminar spirals, interpenetrating spirals, waves on interpenetrating 
spirals, spiral turbulence, a flow with intermittent turbulent spots, turbulent Taylor 
vortices, a turbulent flow with no large-scale features, and various combinations of 
these flows. Some of these flow states have not been previously described, and even 
for those states that were previously described the present work provides the first 
coherent characterization of the states and the transitions between them. These flow 
states are all stable to small perturbations, and the transition boundaries between 
the states are reproducible. These observations can serve as a challenge and test for 
future analytic and numerical studies, and the map of the transitions provides several 
possible codimension-2 bifurcations that warrant further study. 

1. Introduction 
There has been a very large number of experimental and theoretical studies of flow 

between concentric rotating cylinders (circular Couette flow) in the century since the 
earliest studies were conducted by Mallock (1888, 1896) and Couette (1890). Most of 
the work has concerned the primary instability, but in recent years some studies have 
examined the instabilities that occur at higher cylinder-rotation rates. The present 
study was designed to explore systematically the flow states that occur over a large 
range of rotation rates of the inner and outer cylinders in a circular Couette system, 
and to examine the transitions between the different states. 

The Navier-Stokes equations for flows far from equilibrium of course have in 
general multiple stable solutions. A graphic demonstration of this non-uniqueness was 
provided by Coles’ (1965) discovery that, depending on the path followed in 
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FIGURE 1. Regimes observed in flow between independently rotating concentric cylinders. Dashed 
lines indicate the transition boundaries that are difficult to establish from visual observation alone 
since there is no abrupt change in the appearance. Dotted lines indicate the expected, but not yet 
observed, continuation of several boundaries. More detail is shown in figures 2 and 18 for 
counter-rotating and co-rotating cylinders. respectively. 

parameter space, up to  26 distinct stable flow states could be obtained at the same 
Reynolds number in his circular Couctte system. Therefore, in a study such as the 
present one a well-prescribed path in parameter space must be followed if the 
experiments are to  serve as a useful guide to  future theoretical and experimental 
studies. The procedure we have followed is a natural one for numerical, analytical, 
and experimental studies. First the outer cylinder is slowly accelerated from rest to 
its final rotation rate with the inner cylinder a t  rest; this yields the laminar azimuthal 
flow (Couette flow). Then the inner csylinder is slowly (quasi-statically) accelerated 
from rest to  its final rotation rate. This well-defined straightforward protocol follows 
what is sometimes called in bifurcation theory a ‘thermodynamic path’ away from 
thermodynamic equilibrium (Ri = R, = 0). The same protocol was followed in the 
experiments of Coles (1965), Snyder (1968a, b,  1970), and Andereck, Dickman & 
Swinney (1983). In  some cases we deviated from this protocol when it  was found that 
a particular state could be produced more rapidly by an alternative method (see $3). 

The principal result of this study i s  the surprisingly complex transition diagram 
shown in figure 1; the different flows, some of which have not been previously 
described, are listed in table 1. The different flows have been distinguished in the 
experiments by their axial and azimuthal wavenumbers, symmetry under reflection 
(about a plane normal to the cylinder axis), and the rotation frequencies of the 
different modes. The transitions a t  low Reynolds numbers in figure 1 are accessible 
in numerical simulations with currently available computers, so i t  should be possible 
in future combined experimental-numerical studies to  gain insight into the physical 
mechanisms responsible for the transitions identified in figure 1. I n  addition, the 
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AZI = azimuthal laminar flow with weak Ekman vortices 
CKS = corkscrew 
INT = intermittent turbulent spots 
IPS = interpenetrating spirals 

MWV = modulated wavy vortices 
RIP = ripple 
SPI = spiral vortices 
SPT = spiral turbulence 

TRA = transition region 
TTV = turbulent Taylor vortices 
TUR = turbulent flow (featureless) 
TVF = Taylor vortex flow 
TWI = twisted vortices 
WIB = wavy inflow boundary 
WIS = wavy interpenetrating spirals 

WOB = wavy outflow boundary 
WVF = wavy vortex flow 
WVL = wavelets 

TABLE 1. The principal regimes observed in flow between inL2pendently rotating cylinders 

junctions of the transition curves can be studied by bifurcation theory (normal forms 
in codimension-2 theory). The transitions a t  larger Reynolds numbers should serve 
as a guide for later theoretical and numerical work. 

The remainder of this section defines the parameters of a circular Couette system. 
Section 2 reviews previous work, and $3 describes the procedure used to obtain 
the flow states we have studied. Sections 4 and 5 present, respectively, our 
results obtained for counter-rotating and co-rotating cylinders. Section 6 contains 
concluding remarks. 

A circular Couette system with both cylinders rotating is characterized by the 
following control parameters: the radius ratio 7 = a/b, where a and b are the inner- 
and outer-cylinder radii; the aspect ratio r = L/(b-a) ,  where L is the length of the 
fluid column; the inner- and outer-cylinder Reynolds numbers R, = a(b-a) 52,/v and 
R, = b(b--a) a,/ v, where 52, (Q,) is the angular velocity of the inner (outer) cylinder 
and v is the kinematic viscosity; and the end conditions. Our system, discussed in 
Andereck et al. (1983), has a = 5.250 cm and b = 5.946 cm, giving 7 = 0.883. Our 
flow-regime diagrams were obtained primarily for r = 30; Teflon rings attached to 
the outer cylinder defined the upper and lower boundaries. The parameter values 
chosen are typical of those used in several previous experiments. 

Some measurements were also made with r ranging from 20 to 48 (with both free 
and fixed upper surfaces) ; in the range - 1500 < R, < 0 no aspect ratio dependence 
of the transition boundaries was discerned, so data for different aspect ratios were 
combined. Furthermore, in no case was the existence of a particular type of flow found 
to depend on the aspect ratio. However, the fluid behaviour can be quantitatively 
different for other values of r (King & Swinney 1983; King et al. 1984). 

Since the state of the system is generally not uniquely determined by the values 
of 7, r, Ri and R, (except near thermodynamic equilibrium), the complete specifica- 
tion of a flow state must include properties such as the number of Taylor vortices 
N and the wavenumbers mi of azimuthal modes as well as the external control 
parameters. 
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2. Previous work 
Several experimental investigations have been reported on the flows between 

independently rotating cylinders; however, until very recently there has been 
relatively little theoretical work on the problem. Taylor (1923) investigated theo- 
retically and experimentally the stability of azimuthal Couette flow with both 
cylinders rotating. He studied in detail only the onset of axisymmetric Taylor 
vortices. Coles (1965) found that the azimuthal flow between counter-rotating 
cylinders was (for sufficiently large lL20/G?il) unstable to non-axisymmetric spiral 
vortices. In his monumental study of flows between both counter- and co-rotating 
cylinders Coles discovered several very distinctive flows, including intermittent 
turbulent bursts and spiral turbulence. Van Atta  (1966) reported extensive hot-wire 
anemometer measurements of spiral turbulence. Snyder (1968a, b) made detailed 
comparisons of his observations of the most unstable wavenumber of spiral vortices 
between counter-rotating cylinders with the predictions of Krueger, Gross & DiPrima 
(1966). Snyder (1970) found, for 7 = 0.2, 0.5, 0.8 and 0.959, a variety of waveforms 
occurring for small R, in both counter- and co-rotating cylinders. Snyder (1969) also 
found that the finite length of the cylinders and the specific boundary conditions at 
the ends of the fluid column are important in determining how near a given system 
is to the ideal infinite-cylinder case. In particular, he showed that the penetration 
of the Ekman-pumped cells into the bulk of the fluid can affect the flow, a point we 
will discuss in 554.1 and 5.1. Jones (1982) studied numerically the flow between 
counter-rotating cylinders for small R, ; we will discuss his results in $4.3. Finally, 
Andereck et al. (1983) have reported the observation of five new flows occurring 
between co-rotating cylinders. The present study surveys the flows occurring between 
counter-rotating cylinders and extends our earlier work on co-rotating cylinders. 

3. Experimental procedures 
Visualization of the flow states was accomplished using a mixture of 2 yo by volume 

Kalliroscope A Q l W  in water (Matisse & Gorman 1984). The presence of Kalliroscope, 
an aqueous suspension of 25 x 6 x 0.07 pm polymeric flakes, increases the effective 
fluid viscosity by about 2 yo. Interpretation of photographs of flow visualized with 
polymeric flakes is based on the following: a dark area indicates flow along the 
observer's line of sight, while a light area indicates flow perpendicular to the line of 
sight. For a detailed discussion, see Savag (1985). 

We have made some of our measurements with the system immersed in a water 
bath with temperature control of 10.01 OC, but most measurements were made 
without temperature control ; however, the temperature in our laboratory varied by 
only about 0.1 "C over the course of a given transition-sequence run, and the same 
results were obtained with and without precision temperature control. 

Time dependences of the flows have been studied by measuring the intensity of 
laser light scattered by the flakes, as dcscribed in Andereck et al. (1983). Power spectra 
obtained from time-series records of intensity were used to determine angular 
velocities of the various flow features and to distinguish periodic or multiply-periodic 
flows from non-periodic flows.? 

The first step in locating the flow transition boundaries by the protocol described 
in 5 1 was the determination of what constituted an 'adiabatic' acceleration of the 

t All frequencies in the power spectra are scaled as w/Qi. 
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inner cylinder. Measurements were initially made for a wide range of acceleration 
rates, and it was found that within the experimental uncertainty (about 2 yo) no shifts 
in the transition boundaries were discernible for average angular accelerations less 
than 0.15 red/minz ; hence the transition boundaries were traversed with acceleration 
rates less than or equal to this value. Future studies designed to examine with the 
highest precision possible any of the particular transition boundaries that we have 
discovered will of course have to be conducted with even smaller acceleration rates 
[cf. Park, Crawford & Donnelly (1981) ; Ahlers, Cannell & Dominguez-Lerma (1983) 
for detailed studies of the Taylor instability and wavy vortex flow, respectively]. 
However, it  is unlikely that the properties of the different flow states (symmetries, 
wavenumbers, frequencies) will be altered by smaller acceleration rates from rest. For 
example, Andereck et al. (1983) found that transitions from Taylor-vortex flow, 
studied by adiabatic acceleration of the inner cylinder, were independent of the way 
in which the flow was produced. 

4. Flow between counter-rotating cylinders 

in figure 1 and are shown in greater detail for small Reynolds numbers in figure 2. 
The transitions observed in flow between counter-rotating cylinders are summarized 

4.1. Basic $ow and E k m n  cells 

The basic flow (Couette flow) between infinitely long cylinders is azimuthal with 
magnitude given by Ar + B/r,  where 

A = -Qi(qz-p)/(l-q2), B = Oia2(1-p)/(l-q2), 

and p = Q,/Q,. The fluid velocity vanishes on a cylinder of radius 

r = a w  -p)/(7lZ-P)l+- 
In a finite system the pumping of fluid into the Ekman layers adjacent to the 
top and bottom boundaries introduces a non-azimuthal circulation that may be 
significant under some conditions. This circulation, studied by Coles & Van Atta 
(1966) and Snyder (1969), takes the form of large, relatively weak, horizontal vortices 
that may extend from each end to the mid-plane of the system, depending on R, and 
Ri. This is the flow designated AZI in figure 2. For the counter-rotating case in a 
system with r = 29, q = 0.5, and rigid upper and lower boundaries attached to the 
outer cylinder, Snyder found that for R, = - 120, Ri = 100 there were 4 large vortices 
present, 2 near the outer cylinder and 2 near the inner cylinder. The azimuthal 
velocity measurements of Coles & Van Atta (for Ri = 0 and R, = 3000, 6OOO and 
9OOO) show a distortion of the Ar + B/r  velocity profile near the mid-plane for r N 27 
and r] = 0.889. They conclude, however, that the radial and axial components are 
very small. Nevertheless, the Ekman cells can be detected in our system when the 
outer cylinder is spun at high speed after the system haa been at rest for a few hours to 
allow the Kalliroscope flakes to sediment, as figure 3 (a) illustrates. The flakes then 
mix with the fluid below the mid-plane but do not penetrate above it. 

There is some indication that the Ekman cells persist in the presence of strong 
secondary flows; for example, a thin dark line is sometimes seen marking the location 
of the mid-plane, and evidently the Ekman cell boundaries, in the laminar spiral 
vortex flow. The strength of the interaction between the Ekman cells and other modes 
is not known but is probably weak for large r. 

Finite-length effects, such as the vortex-size quantization condition found by Park 
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AZI 

FIQTJRE 2. The flow-regime diagram for counter-rotating cylinders. The abbreviations for the 
different flows are defined in table 1. The different symbols distinguish data for different transitions. 

FIQURE 3. End effects. Inner cylinder at rest: (a )  R, = 1000, R, = 0; Kalliroscope flakes fill only 
the lower half of the cylinder as it is spun up from rest. Co-rotating cylinders: ( b )  R, = 1000, 
R, = 1124; (c) R, = 4005, R, = 4520. 
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& Donnelly (1981), may affect slightly the location of some of the transition 
boundaries that we observe, although the basic behaviour found here should not be 
significantly affected. 

4.2. Primary instabilities 
When R, > - 155& 10 the basic flow is unstable to time-independent axisymmetric 
Taylor-vortex flow ; see the region labelled TVF in figure 2. If R, < - 155 (region SPI 
of figure 2), the basic flow is centrifugally unstable to non-axisymmetric spiral vortices 
near the inner cylinder (Coles 1965; Krueger, Gross BE DiPrima 1966; Snyder 
1968a, b ) .  We have examined the radial cross-section of the flow using the slit- 
illumination technique of Snyder ( 1 9 6 8 ~ )  and have found that the spirals are 
approximately confined to this unstable region. The primary pattern that forms is 
shown in figure 4 (a) ,  where two spirals exist separated by an interface located near 
the mid-plane. The interface location is not always constant with time, nor is it 
necessarily as well defined as in the photograph; sometimes the interface region is 
2 to 3 times the size of the vortices and consists of the overlap of both of the originally 
separate spirals. For the particular case shown in the figure the lower spiral eventually 
left the flow completely, leaving the upper spiral over the entire annulus, as shown 
in figure 4 (b ) .  

Near R, = - 155, Taylor or spiral vortices are weakly stable; they can in fact exist 
simultaneously in different regions of the cylinder system. Increasing Ri leads to a 
complicated series of transitions from Taylor-vortex flow to spirals and mixtures of 
the two flows. The order of these transitions is not well established and may depend 
sensitively on initial conditions, boundary conditions, and the external noise level. 

The time dependence of spiral-vortex flow can be complex ; figure 4 (c) shows a time 
series for light scattered from near the mid-plane for a state at Reynolds numbers 
slightly higher than those for the photographs. The changes in the character of the 
interface with time lead to a power spectrum with broad components (figure 44, 
indicating that there is an unpredictable element in the flow. This is in marked 
contrast with the first time-dependent flow for R, = 0, wavy-vortex flow, which is 
periodic over a large range of R, and vortex sizes. It is not clear why there should 
be a difference in the dynamics; infinite-cylinder theories may not show such 
behaviour since the non-periodicity could be related to the presence of the top and 
bottom boundaries. If the end boundaries were not perfectly aligned perpendicular 
to the rotation axis, one might expect a periodic forcing of the flow, not the non-periodic 
behaviour observed. On the other hand, if the location of the interface is determined 
by a delicate balance between Ekman pumping occurring a t  either end, it may simply 
be very sensitive to any mechanical perturbations of the system, resulting in a 
wandering or diffuse interface. In addition, small temperature gradients in the flow 
might induce the observed non-periodicity. 

For R, < - 1500, separate spirals exist in our system only as short-lived transients. 
Within a few seconds after their formation the interface between the spirals breaks 
down, if it  has ever developed, allowing the two spirals to interpenetrate and 
thereafter co-exist over most of the cylinder length (see 94.5). 

4.3. Wavy-vortex $ow 
The wavy-vortex flows found in the region labelled WVP in figure 2 are similar in 
many respects to wavy-vortex flows with R, = 0 except t h a t  the number of azimuthal 
waves is typically larger (8 or 9) with counter-rotating cylinders than with the outer 
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FIGURE 4. Laminar spiral flow (SPI): (a) Separate laminar spirals, R, = -300, R, = 240. (b) Single 
laminar spiral, R, = -300, R, = 240. (c) The time dependence of scattered light intensity for 
R, = -690, R, = 350, where U, D, and I indicate respectively an upward-moving spiral, downward- 
moving spiral, and interpenetrating spirals. (d) The power spectrum for R, = -690, R, = 350. (f,, 
and fie, the frequencies of the inner and outer cylinders respectively, are presumably artifacts arising 
from light reflected by the inner and outer cylinder walls.) 
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we 0, 
r R, Ri P Ta U m (experiment) (Jones 1982) 

30 -96 167 -0.51 5733 3.56 2 0.280 0.242 
30 -119 170 -0.62 6459 3.56 2 0.280 0.204 
30 -125 187 -0.59 7642 3.77 2 0.245 0.135 
30 -158 230 -0.60 11707 3.77 6 0.143 0.058 
30 -152 223 -0.60 10928 3.56 7 0.136 0.050 
20 -153 223 -0.60 10987 3.77 7 0.141 0.050 

TABLE 2. A comparison of the measured angular velocities of the waves with the predictions of Jones 
(1982) for wavy-vortex flow between counter-rotating cylinders. Ta is the Taylor number, u is the 
dimensionless axial wavenumber [a = 2lt(b-a)/h, where h is the vortex axial wavelength], m is 
the azimuthal wavenumber, and the angular velocities we and w, are expressed relative to the inner- 
cylinder frequency. 

cylinder at rest (usually 7 or fewer waves). As shown in table 2,  we have measured 
the angular velocities for a few cases, and have compared them with the predictions 
of Jones (1982). The agreement between experiment and theory is good at small 
Taylor numbers (Fa = . 2 Q f ~ Z ~ ( 7 ~ - p ) / ( l  - q 2 )  u s ) ,  but the difference between theory 
and experiment becomes large at larger Taylor numbers. However, the calculations 
are not expected to apply if the waves redistribute angular momentum significantly, 
and that appears to be the case at larger Taylor numbers (C. A. Jones, private 
communication). 

4.4. Low-R, modulated wavy-vortex Jlow 
The closed region labelled MWV in figure 2 consists of modulated waves on Taylor 
vortices, similar in nature to the flows with two travelling waves on Taylor vortices 
studied with R, = 0 (Gorman & Swinney 1982; Shaw et al. 1982). However, the region 
of occurrence is in a much lower range of R, than the MWV regime for Ro = 0. 

One of the important features of these flows is the lack of phase-locking between 
waves on different Taylor vortices, illustrated in figure 5. Waves on different Taylor 
vortices oscillate azimuthally with respect to one another, as viewed in a reference 
frame moving at the mean angular velocity of the waves. The amplitude of these 
oscillations is about one-half of an azimuthal wavelength, and the axial wavelength 
is comparable with the length of the cylinders. This oscillation produces a third 
component in the spectra, as seen in figure 6 ,  with frequency considerably lower than 
the two primary components that correspond to the wave-rotation frequency and its 
modulation frequency. This oscillation may arise from a non-propagating mode, 
although this is difficult to determine without the benefit of further measurements 
in a rotating reference frame. Zhang & Swinney (1984) have found non-propagating 
modes when R, = 0. 

Finally, the amplitude of the modulation is large; at maximum modulation the 
wave in question virtually disappears. In  contrast, for R, = 0 the waves flatten 
without losing their basic form. 

4.5. Interpenetrating laminar spirals 
The interface between the spirals in the upper and lower portions of the annulus 
(discussed in $4.2) disappears as R, is increased, allowing both spirals to exist 
simultaneously over most of the cylinder length. These interpenetrating spirals are 
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FIGURE 5. Modulated wavy vortex flow (MFVL') at R, = - 100, R, = 350. The time interval between 
photographs is 10.0 s ;  the period of the innrr cylinder is 7.22 s ,  the outer cylinder, 28.7 s .  The line 
drawings indicate the location of wave crests. 

found in the region marked IPS in figure 2. Near each end of the cylinder system 
only one of the spirals exists, the onc that existed in that end of the system in the 
separate spiral state. Such a flow is shown in figure 7, where a comparison is made 
between the appearance a t  low and high outer-cylinder speeds. The spiral vortices 
are distinctly smaller for R, = - 3000 ; the size difference correlates with the thickness 
of the centrifugally unstable layer next to the inner cylinder, which is proportional 
to sZ,/sZ, for 52, + Qi. When viewed in a cross-section the two spirals are not found 
to be separated radially, with one near the inner cylinder and the other near the outer 
cylinder, but instead both are approximately confined to the unstable layer near the 
inner cylinder. 

Figure 7 also shows power spectra corresponding t o  the photographed states. A t  
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FIGURE 6. Power spectrum of low-Ri modulated wavy-vortex flow (MWV); R, = - 110, R, = 350, 
I( is the rotation frequency of the wavy pattern, F2 is the modulation frequency, and Fphase is the 
frequency of axial phase oscillation. 

low R, there is one reasonably well defined frequency associated with the flow, along 
with harmonics, although much of the spectral power is concentrated in the broad 
peaks. A t  high R, there are no traces of sharp components left ; the only peaks aside 
from instrumental artifacts are very broad. Thus, although the interpenetrating 
spirals appear visually to have a nearly ordered spatial structure, the spectra indicate 
that the pattern is continuously evolving in a non-periodic way. 

4.6. Wavy interpenetrating spirals 

In the region labelled WIS in figure 2, the interpenetrating laminar spirals are 
unstable to the formation of waves. Typically these states, as shown in figure 8, are 
not as well defined visually as wavy-vortex flow. The visual appearance is time- 
dependent; for constant R, and R, the wavy structure may be quite evident for a 
while, then a short time later the appearance is similar to the interpenetrating 
laminar spirals. The spectra of these flows are lacking in features, with only a noisy 
background present that increases in power at low frequencies. 

4.7. Int errnit t ency 

Turbulent spots form in interpenetrating laminar spiral flow in the region marked 
INT in figure 2.  Figure 9 is a sequence of photographs of such a flow. The time 
evolution is apparently non-periodic, with spots forming and decaying at random 
locations in the flow with a timescale of the order of a few outer-cylinder periods. 
The spots vary in size from 2 to 20 times the width of the gap between the cylinders. 
With Ri near the lower boundary of the region of occurrence the spots form as the 
laminar spirals decrease in intensity, and then disappear as the spirals build to their 
former strength. Near the upper boundary of the region the laminar spirals are much 
weaker, and the spots are more persistent. 

A typical time-series record of the reflected-light intensity for this flow is shown 
in figure 10 (a ) .  The corresponding power spectrum, shown in figure 10 ( b ) ,  has no sharp 
features. Figure 10 ( b )  shows that over much of the frequency range the spectral power 
apparently drops off exponentially fast, consistent with deterministic non-periodic 
behaviour (Frisch & Morf 1981 ; Greenside et al. 1982), while figure 1O(c) indicates 
a possible power-law decrease, consistent with stochastic models of noise (Greenside 
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FIGURE 7. Interpenetrating laminar spiral flow (IPS): ( a )  R, = - 1O00, R, = 435; (b)  R, = -3OO0, 
Ri = 860; (c) power spectrum of ( a ) ;  ( d )  power spectrum of (b) .  
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FIGURE 8. Wavy interpenetrating spiral flow (WIS): (a) and ( b )  show two successive views of 
the same flow at R, = -300, R, = 350, (c) Power spectrum of this flow. 

et al. 1982). Owing to this ambiguity we can draw no conclusion as to the nature of 
the noise in this flow. 

4.8. Transition region 
The region labelled TRA in figure 2 consists of an ill-defined flow regime in which 
transition occurs between intermittent turbulent-spot formation, turbulent flow, 
wavy interpenetrating spirals, and modulated wavy Taylor vortices. The detailed 
behaviour in this region has not been studied, but should be very interesting since 
a large variety of flows are competing for stability. 

4.9. Spiral turbulence 

Spiral turbulence, which consists of a periodic alternation of spiral turbulent and 
laminar bands, exists in the region labelled SPT in figure 2. A photographic sequence 
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FIGURE 9. Intermittent turbulent spots (1x7') in a flow with interpenetrating laminar spirals. The 
numbers labelling the photographs give thr time in seconds; the period of the inner cylinder was 
4.25 s, the outer cylinder. 1.87 s (R,  = - 1500. Ri = 590). 
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FIGURE 10. (a) Reflected-intensity time series for a flow with intermittent turbulent spots for 
R, = - 1500, R, = 590. ( b )  A semi-log power spectrum of the state in (a); for comparison the solid 
straight line shows a pure exponential decay. (c) A log-log-scale power spectrum of the state in (b) .  
The slight rise in the spectral power at the highest frequencies is due to aliasing (Otnes & 
Enochson 1978). See text for a discussion of the spectra. 

of a typical state of spiral turbulence is shown in figure 11.  Both right- and left- 
handed spirals were observed, although the relative probability of their occurrence 
was not determined. The power spectrum consists of a sharp frequency component, 
corresponding to the periodic passage of the turbulent band, and a broad noise 
background, as shown in figure 11 (c). 

The rotation frequency w, of the spiral pattern has been studied by Coles (1965) 
and Van Atta (1966) over a wide range of cylinder speeds for large outer-cylinder 
rotation rates. They found the pattern moved with approximately the mean angular 
velocity of the two cylinders, although for R, 3 - 10000 the velocity differed 
significantly from the mean cylinder speed. We have measured o, (with lRol much 
smaller than in the studies of Coles and Van Atta)  and have found that w,/sZ, is 
essentially constant over a large range of sZi (see figure 12). 

When the system is in a laminar azimuthal flow state at  sufficiently large IB,I, a 
rapid increase in R, to just above the lower boundary for spiral turbulence often 
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FIQURE 11. (a) and ( b )  are photographs of sl’iral turbulence (SPT) separated in time by a fraction 
of an inner-cylinder period; the period of the inner cylinder was 2.49 s,  the outer cylinder, 0.81 s 
(R,  = -3500, R, = 1O00, r= 48). (c) Power spectrum of a nearby state ( R ,  = -33000, R, = 1O00, 
r = 48). 
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FIGURE 12. Spiral turbulence (SPT) pattern angular velocity as a function of R, with fixed 
R, = - 3500. Some values were obtained in the hysteresis region below R, = 960. A indicates ws/Qi, 
+ indicates w , / a ,  where a = #(Q,+Q,), and indicates os/Qo. 

produces a state consisting of both-handed turbulent spirals, one in the upper half 
of the cylinder, the other in the lower half. The spirals join near the mid-plane to 
form a V-shaped pattern, as shown in the time-lapsed photographic sequence in 
figure 13. The location of the interface between the spirals may be related to the 
presence of Ekman cells. At large R, this state can exist for many hours, perhaps 
indefinitely, but usually at low R, it  will decay after a few minutes to one or the 
other of the basic spirals. 

As R, increases, the width of the turbulent spiral band increases until finally there 
is no trace of a large-scale structure remaining, as the sequence of photographs in 
figure 14 illustrates. The corresponding spectra contain sharp components over a very 
large range in Ri, even persisting when the turbulent fraction approaches 1. 

4.10. Turbulent Pow 
In spiral turbulence the fraction of turbulent fluid reaches 1 as Ri is increased. We 
call the resultant featureless flow turbulent. This flow, labelled TUR in figure 2, lacks 
any apparent large-scale structure, the dominant visible lengthscale being smaller 
than the gap between the cylinders for large cylinder speeds (see figure 15). However, 
at much larger R, than the range shown in figures 1 and 2, a Taylor-cell-like structure 
re-emerges. (A region with weakly turbulent Taylor vortices (TTV) is shown in 
figures 1 and 18 for R, = 0. This flow is discussed in Fenstermacher, Swinney & Golluh 
(1979) and Brandstater et al. (1983).) The power spectra for turbulent flow are 
featureless with a high frequency drop-off that is not inconsistent with a power law, 
although as in the case of intermittency we can draw no firm conclusion about the 
spectral behaviour a t  high frequencies. 
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FIGURE 13. V-shaped turbulence for R, = - 1670, R, = 1070, and r = 48. The time interval between 
photographs was a fraction of an inner-cylinder period; the period of the inner cylinder was 2.30 s, 
the outer cylinder, 0.60 s .  

4.1 1 .  Hysteresis 

Several of the flows between countvr-rotating cylinders exhibit hysteresis in the 
locations of their stability boundaries in Reynolds-number space. We have limited 
our study of hysteresis to three flows: spiral turbulence (shown by Coles (1965) to  
be highly hysteretic), interpenetrating laminar spirals, and modulated wavy vortices. 
The results are summarized in figure 16. For each measurement R, was fixed, Ri was 
increased to just beyond the stability boundary of interest, and then Ri was slowly 
decreased until the original flow was regained. 

The magnitude of the hysteresis of spiral turbulence can be quite large, while for 
interpenetrating laminar spirals and modulated wavy vortices it is typically less 
than 10 yo. The hysteresis is large enough (for R, < - 2000) that  at least three distinct 
flows are possible for given R, and Ri, the flow actually realized depending on the 
system history. 

Figure 17 illustrates the gradual change in a spiral turbulence pattern as Ri was 
decreased through the hysteresis regime. At Ri - 690, just below the last flow shown, 
the system returned abruptly to laminar azimuthal flow. 
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FIQURE 14. Photographic sequence of spiral turbulence (SPT) as R, was increased for fixed 
R, = -3OOO. The numbers on the photographs indicate R,. 
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FICXJR~: 15. Turbulent flow (TUR) at R, = -4000, Ri = 2000 
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FIGURE 16. Hysteresis. The stability-boundary curves shown were obtained in measurements with 
Ri increasing, as in figure 1. The data points are for decreasing R,: ., spiral turbulence; +, 
interpenetrating laminar spirals ; and *, modulated wavy vortices. 

4l 

5. Flow between co-rotating cylinders 

figure 18. 
The transitions observed in flow between co-rotating cylinders are summarized in 

5.1. Basic pow 

The basic flow between co-rotating cylinders is azimuthal, the same as for counter- 
rotating cylinders. However, for the co-rotating case there is no radius where the 
velocity goes to zero; therefore, if any region of the flow becomes centrifugally 
unstable by the Rayleigh criterion, then the flow at all radii is unstable. 

End effects are important in understanding the flow near the first instability, 
perhaps more so than for counter-rotating cylinders. Figures 3 (b) and ( c )  show the 
end cells just below Taylor-vortex onset for small and large R,, respectively. For 
finite-length cylinders rotating at high speeds the overall flow near the onset of 
Taylor-vortex flow may be dominated by the end cells. Figure 19 shows that the 
heights of the end cells at Taylor-vortex onset become many times the gap width at 
large R,. With r = 30 the fraction of the total cylinder length that is occupied by the 
end cells reaches 0.6 within the range of R, in figure 19; thus in order to  examine 
properly the bulk flows near onset at larger R, than in the present survey (where 
R, < 1200) the aspect ratio would have to  be increased significantly. However, for 
R, well above Taylor-vortex onset in any case the end cells become much smaller ; this 
occurs through a process of successive formation and shedding of Taylor vortices from 
the end cells as R, is increased. Thus, if R, is sufficiently far above the Taylor-vortex 
nnaat i t  ~ O T T  atil l  ho nnaaihlo  tn n o n l o o t  onrl offonfa T n  011  tho nhaovwot inna x i r e  ronnvt in 
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FIGURE 17. These photographs illustrate the hysteresis in spiral turbulence as Ri was decreased 
below the initial onset value (Ri = 868). fin R,  = -3000. The numbers on the photographs 
indicate Ri. 
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FIGURE 18. The flow-regime diagram for co-rotating cylinders. The abbreviations for the different 
flows are defined in table 1. The different symbols distinguish data for different transitions. 
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FIGURE 19. End-cell height as a function of R, at the onset of Taylor-vortex flow for flow between 
co-rotating cylinders. In the Reynolds-number range of these data the onset of Taylor vortex flow 
ranges from Ri = 580 at R, = 500 to R, = 4650 at R, = 4000. Note that the data in figures 1 and 
18 correspond to R, < 1200; in this range of Ro the ratio of the end cell height to annulus length 
is less than 0.13 near Taylor-vortex-flow onset and much smaller still at larger R,. 
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FIGURE 20. ( a )  Twisted Taylor vortices (TlVI); Ri = 1040, R, = 720. ( b )  Wavy inflow boundaries 
{WIB); R, = 1310, R, = 700. (c) Wavy outtlow boundaries (WOB); R, = 1170, R, = 700. ( d )  
Wavelets (WVL); Ri = 1250, R, = 730. f = 30 for all four cases. The letters I and 0 indicate the 
inflow and outflow boundaries, respectivel),. 
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FIGURE 21. The angular velocity of wavy vortex flow between co-rotating cylinders. The solid line 
is an empirical fitting function, 0.332(1+ 2p). The u s  correspond to points on path 1 shown in the 
inset, the As correspond to points on path 2, and the + s  correspond to points on path 3. 

$85.2-5.4 the measurements were made under conditions in which the end cells 
occupied a small fraction of the cylinder length; hence end effects were neglected. 

5.2. Primary instability 
The azimuthal bulk flow between co-rotating cylinders is unstable to the formation 
of time-independent Taylor vortices, as indicated by the label TVF in figure 18. This 
is consistent with the stability analysis of Krueger et al. (1966). 

5.3. Twisted vortices 

Visually the most unusual flow between co-rotating cylinders is what we have called 
twisted vortex flow, found in the region labelled TWI in figure 18. This flow, discussed 
in Andereck et al. (1983), is shown in figure 20 (a).  The pattern consists of a periodic 
rope-like structure internal to the Taylor vortices; the inflow and outflow boundaries 
remain flat within observational limits. The axial phase-locking of the pattern 
indicates that some communication occurs across the vortex boundaries in spite of 
their flatness. This flow is consistent with the predictions of the bifurcation analyses 
of Golubitsky & Stewart (1986), Chossat & Iooss (1985), and Demay & Iooss (1984). 

5.4. Wavy vortex boundary Jlows 
Four distinct simple wavy vortex boundary flows have been found between co-rotating 
cylinders. The first is wavy vortex flow (WVF in figure 18), in which both the inflow 
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RQURE 22. (a) The arrows point to the ‘ripple’ (RIP) observed in wavy-Taylor-vortex flow; 
Ri = 1750, R, = 250. ( b )  The arrow points to the ‘corkscrew’ (CKS) pattern observed on wavy- 
Taylor-vortex-flow boundaries; Ri = 2030, R, = 300. r = 30 in both cases. 

and outflow boundaries are wavy, with the same angular velocity for each wave. There 
are typically 6 waves around the cylinder, although, as can be seen in the flow-regime 
diagrams, there is a regime in which the wavenumber is as low as 2. The angular 
velocities of the waves are plotted for several values of R, and R, in figure 21. 

The wavy inflow- and outflow-boundary flows (WIB and WOB, respectively) are 
two distinct flows in which one boundary is flat while the other is wavy, as can be 
seen in figures 20(b) and 20(c). These patterns have an axial period twice the 
wavelength of the axisymmetric Taylor vortices. The amplitude of these waves never 
grows as large as the amplitude of a wavy vortex with similar azimuthal wavenumber. 
For our choice of axial wavelength the flow with a wavy inflow boundary can co-exist 
with twists, as noted in the flow-regime diagrams. 

The fourth flow, called wavelets (WVL in figure 18) is shown in figure 20(d). There 
are waves on both boundaries, similar in appearance to the waves in WIB and WOB. 
In  contrast to wavy-vortex flow, the waves on the inflow and outflow boundaries for 
the wavelet flow move a t  different angular velocities and in general have different 
azimuthal wavenumbers, as confirmed by observations in a rotating reference frame. 
This is therefore a quasi-periodic flow that is distinct from the modulated wavy vortex 
flows discussed in 54.4 and in Gorman & Swinney (1982) and Shaw et al. (1982). The 
wave angular velocities have not yet been determined for this flow. Further details 
on WIB, WOB, and WVL may be found in Andereck et al. (1983). 



Flow regimes between independently rotating cylinders 181 

5.5. High-azimuthal-wavenumber jlows 
For Ri > 1500, flows are found with azimuthal wavenumbers considerably higher 
than for any of the flows discussed thus far. The first of these is a small-amplitude 
wave which we have termed ripple (labelled RIP in figure 18); it  is most noticeable 
near the narrow region of a wavy vortex, as shown in figure 22 (a). 

At still larger R, there appears a large wavenumber disturbance associated mainly 
with the outflow boundaries, although the waves extend from the boundaries around 
the vortices in a corkscrew fashion; hence the mnemonic CKS in figure 18. This flow 
feature is indicated by arrows in figure 22 ( b ) ;  i t  may be related to the instability of 
the vortex outflow-boundary jet discussed by Reith (1981). 

6. Discussion 
Previous theoretical work has largely dealt with the primary instabilities of Couette 

flow. For example, Krueger et al. (1966) have analysed the behaviour of the system 
near R, = - 155, R, = 180, a region characterized by the intersection of several 
transition boundaries, and found that the azimuthal flow is unstable to Taylor 
vortices for R, 2 - 155 and to spiral vortices for R, 5 155. More recently, R. C. 
DiPrima, P. M. Eagles & J. Sijbrand (private communication) have used a numerical 
approach on a six-dimensional manifold to predict Taylor vortices, spiral vortices, 
and, as a nearby secondary instability, wavy spirals. Their results are generally in 
accord with our observations. 

Chossat & Iooss (1985), Demay & Iooss (1984) and Golubitsky & Stewart (1986) 
have examined analytically the bifurcations possible given the symmetries of the 
system ; Golubitsky & Stewart (1986) have in addition made an explicit reduction 
to a six-dimensional manifold. These authors have obtained solutions consistent with 
Taylor vortices, wavy vortices, modulated wavy vortices, spiral vortices, and twists. 

To understand more fully the various flows and instabilities we have described, 
particularly those far removed from simple Couette flow, i t  will be necessary to use 
a variety of numerical and analytical techniques, as well as to conduct detailed 
experimental studies of specific flows and the transitions between flows. We now 
suggest possible directions for future work. 

First, i t  should be possible to investigate many of these flows with numerical 
techniques such as the pseudo-spectral method used by Marcus (1984a, b), the 
Galerkin method used by Jones (1982), and the finite-difference method used by Fasel 
& Booz (1984) and by Lucke et al. (1984). Such numerical simulations will help provide 
an understanding of the underlying physical processes leading to the different 
instabilities. 

Second, dynamical systems-analysis methods, including phase-portrait reconstruc- 
tion from time series and subsequent extraction of Poincarb sections and maps, 
should be applicable to the flows we have discussed. Procedures have been developed 
for computing from the phase portraits the dimensions of the phase-space attractors 
(Brandstater et al. 1983) and Lyapunov exponents (Wolf et al. 1985); use of these 
procedures will quantify the different chaotic flows. 

Third, the flows we have described should be amenable to multiple co-dimension 
bifurcation analysis (see Guckenheimer 1981, 1984; Arneodo, Coullet & Spiegel 1984; 
Brand, Hohenberg & Steinberg 1984; Knobloch & Guckenheimer 1983). Of particular 
interest will be the neighbourhoods of co-dimension-two bifurcation points (where 
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stability boundaries intersect). It is possible that mode competition in these regions 
will lead to chaotic behaviour. 

Finally, the present experiments have been conducted with one basic procedure 
(with R, fixed and Ri increased quasi-statically), one radius ratio (7 = 0.883), and, 
for co-rotating cylinders, one average axial wavelength (X/d = 2.00). Changing the 
parameters or the procedure will significantly affect the flow-regime diagrams, 
possibly produce new states of flow, and may reveal the presence of bifurcations of 
co-dimension greater than two. 

In  summary, the characterization of the various flows described in the present 
study should serve aa a guide to future experimental and theoretical studies of the 
bifurcations and bifurcation sequences in the circular Couette system. 
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